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SUMMARY 
A theory is initiated for the generation of waves upon a water 

surface, originally at rest, by a random distribution of normal 
pressure associated with the onset of a turbulent wind. Corre- 
lations between air and water motions are neglected and the 
water is assumed to be inviscid, so that the motion of the water, 
starting from rest, is irrotational. It is found that waves develop 
most rapidly by means of a resonance mechanism which occurs 
when a component of the surface pressure distribution moves 
at the same speed as the free surface wave with the same wave- 
number. 

The development of the waves is conveniently considered in 
two stages, in which the time elapsed is respectively less or greater 
than the time of development of the pressure fluctuations. An 
expression is given for the wave spectrum in the initial stage of 
development (§3.2), and it is shown that the most prominent 
waves are ripples of wavelength A,, = 1.7 cm, corresponding to 
the minimum phase velocity c = (4gT/p)lI4 and moving in 
directions ~os-~(c/U,) to that of the mean wind, where U, is 
the ‘ convection velocity ’ of the surface pressure fluctuations of 
length scale A,, or approximately the mean wind speed at a height 
A,, above the surface. Observations by Roll (1951) have shown 
the existence under appropriate conditions, of waves qualitatively 
similar to those predicted by the theory. 

PA. 2 F  



41 8 0. M. Phillips 

Most of the growth of gravity waves occurs in the second, or 
principal stage of development, which continues until the waves 
grow so high that non-linear effects become important. An 
expression for the wave spectrum is derived ($4.1), from which 
follows the result 

- 
where ez is the mean square surface displacement, the mean 
square turbulent pressure on the water surface, t the elapsed 
time, U, the convection speed of the surface pressure fluctuations, 
and p the water density. This prediction is consistent with 
published oceanographic measurements (0 4.3). 

It is suggested that this resonance mechanism is more effective 
than those suggested by Jeffreys (1924, 1925) and Eckart (1953), 
and may provide the principal means whereby energy is transferred 
from the wind to the waves. 

1. INTRODUCTION 
I n  the following pages, a theory is proposed to account for the generation 

of waves by wind. The  problem has attracted attention for many years, 
during which time many experimental studies have been made and many 
hypotheses advanced to account for the results of these observations. 
However, no really satisfactory explanation of the phenomenon has been 
offered and not even the physical processes involved can be regarded as 
known. Although casual observations of wind-generated waves must have 
been made by almost everyone, thorough experimental investigations are 
difficult, and our understanding of the subject has consequently been very 
limited. The  best known of the various hypotheses put forward are those 
due to Jeffreys (1924, 1925) and Sverdrup & Munk (1947), which are 
described in a valuable review of the subject by Ursell (1956). Jeffreys’s 
sheltering hypothesis is the very reasonable one that the wind passing over 
any waves already existing on the surface induces a variable pressure 
distribution, and that the component which is in phase with the wave 
slope supplies further energy to the wave, resulting in its continued develop- 
ment. The  predictions from this hypothesis involve a sheltering coefficient s, 
which, for a wave in which the energy gain from the wind just balances the 
viscous dissipation, is required to have a value of approximately 0.27. 
However, experimental measurements of s made on solid wave models 
gave values which were smaller by an order of magnitude, so that it must 
be concluded that the effect of sheltering, though undoubtedly present to 
some degree, is not efficient enough to account for the observed wave growth. 
The  failure of this hypothesis led Sverdrup & Munk and others to consider 
the effect of the tangential stresses set up  on the water surface. By assuming 
that all the energy communicated to  the water by these stresses appears in 
waves and none in currents, they were able to account for the order of 
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magnitude of the observed wave heights. But such theories, based upon 
energy considerations alone, are hardly satisfactory; and, as a means of 
producing the irrotational motion associated with surface waves, the shear 
stresses seem intuitively to be singularly inefficient, particularly in the 
early stages of wave growth. It seems more plausible to  suppose that the 
initiation and early development of waves is a consequence of fluctuations 
in the normal pressure upon the surface, which under natural conditions 
are always present on account of the invariably turbulent character of the 
wind. As the waves develop, the influence of the shear stresses upon the 
wave pattern may not remain negligible, though it is difficult to give an 
a priori estimate of their importance. However, it will be seen later that 
the observed wave heights can be explained in terms of the pressure fluctua- 
tions alone, so that it seems possible that the effects of the shear stresses 
are rarely, under natural conditions, dominant in the wave growth. 

The  present approach is developed without specific empirical assumptions, 
such as the sheltering hypothesis of Jeffreys or the assumptions of energy 
transfer involved in the work of Sverdrup & Munk. The  mathematical 
problem can be formulated as follows. Given that at an initial instant a 
turbulent wind commences to blow across an infinite sheet of deep (inviscid) 
water originally at rest, generating a distribution of fluctuating pressure on 
the surface which is a stationary random function of position and time, the 
aim is to study the properties of the surface displacement at subsequent 
times. 

An attempt to solve the problem in a manner similar to this was made 
by Eckart (1953). He  represented the pressure distribution associated with 
the turbulent wind in a very specific way, i.e. as an aggregate of pressure 
points of a given size and duration over a finite storm area. It is very likely 
that this representation is too specific to give an adequate description of the 
randomness of the fluctuations in pressure associated with the turbulent 
wind. It will be seen later that this randomness is essential, since the water 
surface selects from the whole range of wave-numbers in the applied pressure 
distribution certain ones whose amplitude increases most rapidly by a 
mechanism involving a type of resonance. The  inadequacy of Eckart’s 
representation in this respect is probably the most important cause of the 
failure of his theory to explain the observed wave heights; his predicted 
values are an order of magnitude too small. 

It is clear from the way the problem has been formulated that the present 
treatment is not a stability theory, such as the Kelvin-Helmholtz model 
(see, for example, Ursell 1956). It is found that waves can grow not only 
through an instability but by this mechanism of resonance between the 
components of the surface pressure distribution and the free surface waves. 
It cannot be claimed that this resonance effect, whose nature will be 
explained more fully below, is the only one capable of generating waves; 
for instabilities of the Kelvin-Helmholtz type will almost certainly occur 
if the wind velocity is sufficiently high and established sufficiently rapidly 
(perhaps producing the capillary ripples observed in strong gusts of wind), 
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and in some circumstances the effects of sheltering and shear-stress action 
may not be negligible. However, it does account in a natural way for a 
variety of observed phenomena, though a true appreciation of its scope and 
limitations must await the results of further investigations, particularly on 
the effects of the non-linearities which become important when the wave 
slopes become appreciable. 

My understanding of the problems involved in the generation of waves 
by wind has been greatly helped by discussions with Dr M. S. Longuet- 
Higgins of the National Institute of Oceanography, Surrey, and with 
Mr F. Ursell and Dr A. A. Townsend at Cambridge; it is a pleasure to 
acknowledge my indebtedness to them for their constructive comments 
upon this work. 

2. THE APPROACH TO THE PROBLEM 

2.1. The physical background 
It is a matter of common observation that winds, blowing over the 

ground or over water, do not consist of streams of air in steady and uniform 
motion but rather of an irregular series of ‘ puffs ’ and ‘ lulls ’ carrying eddies 
and swirls distributed in a disordered manner. In the language of the fluid 
dynamicist, the wind is not laminar, but invariably turbulent. This 
turbulent nature of the wind will be found to result in the birth and growth 
of waves upon a water surface. The atmospheric eddies, or random velocity 
fluctuations in the air, are associated with random stress fluctuations on 
the surface, both pressures (i.e. normal stresses) and tangential shear 
stresses. The eddies are borne forward by the mean velocity of the wind, 
and at the same time they develop, interact and decay, so that the associated 
stress distribution f both moves across the surface with a certain convection 
velocity dependent upon the velocity of the wind and evolves in time as 
it does so. An overall convection velocity of the stress fluctuations can be 
defined mathematically as the velocity of the frame of reference in which their 
frequency scale is least, or their time scale greatest, This least frequency 
scale is characteristic of the evolution of the stress distribution, whereas 
the frequencies observed, say at a fixed point, are invariably greater because 
of added contributions from the sweeping of the stress pattern past the 
point. 

The stress distribution contains components with a very large range of 
wave-numbers, and as might be expected, Fourier components with very 
different wave-numbers K are convected at different speeds. The surface 
stress fluctuations of any given length scale can be attributed to turbulent 
eddies near the surface whose length scale is of the same order of magnitude, 
and the larger eddies will be convected by the mean wind with a greater 
speed than the smaller stress-generating eddies lying near the surface. 
A definition to express this slightly more refined concept can be given as 
follows. If F(x,  t )  is the two-dimensional spatial Fourier transform of the 
surface stress covariance f (x’ ,  t’)f(x’ + x, t’ + t ) ,  then the convection velocity 
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U,(x) for the components of wave-number x is the velocity of the frame 
of reference in which the time scale 

[ F ( x ,  0)l-l rrn F(x,  t )  dt 
J o  

is greatest. That  is, we take axes moving with velocity u, and in this frame 
of reference (see 54.1) 

F(x,  t ,  u) = [ F ( x ,  t)lu = 0 cos(x . u t) .  

The convection velocity U,(x) is the value of u for which 
m 

0 
[F(x ,  t)],, = cos(x . u t )  dt 

is a maximum. This maximum time scale, or development time of the 
stress fluctuations, which appears later in the analysis, will be denoted 
by O(x). I n  the frame of reference convected with velocity U,, the time 
dependence is slowest and is determined by the growth and decay of the 
eddies as they are carried along. 

The  convection velocity U, defined in this way must be related to the 
mean velocity of the wind measured at a certain height above the surface. 
The  physical picture of the convection of the stress-generating eddies 
mentioned above suggests that U,,(x) is of the same order as the mean 
velocity of the wind at a height K - ~  above the surface. Now, the mean 
velocity profile of the wind U(z)  is determined by the friction velocity 
uy (=  ( ~ ~ / p ~ ) ~ / ~  where T~ is the mean horizontal shear stress at the surface, 
and pa the density of the air), by the roughness length x,, and by the 
kinematic viscosity v, and is of the form 

In  aerodynamically rough flow, the function B is in effect zero, and the 
roughness length zo for a water surface is probably related to u, by an 
expression of the type u i  cc gx, and for moderate winds is of order 0.1 cm. 
The  velocity profile of the wind over a water surface is discussed in recent 
review articles by Ellison (1956) and Ursell (1956); the reader is referred 
to these accounts if further detail is required. However, the importaqT 
point in this connection is that when x/xo is large, the variation of mean 
velocity with height is slow, so that for the components of the stress 
distribution whose length scale is of the order of several metres, the 
convection velocity UJx) is very nearly equal to the wind velocity as usually 
measured from a ship. For the very much smaller components, however, 
it may be considerably less. 

Our problem is to discover the nature of the action between this stress 
distribution and the water surface, and the investigation of this is described 
in the following sections. However, it will perhaps be clearer if some of the 
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salient features are described first in physical terms, although this will 
necessitate anticipation of some of the analysis to be developed later. This 
background will, it is hoped, make the direction and implications of the 
subsequent mathematics more evident. 

We have assumed that the fluctuating pressure upon the water surface 
is responsible for the birth and early growth of waves. If a Fourier analysis 
were to be made in the two space dimensions of the surface and in time, 
components would be found over a wide range of wave-numbers and 
frequencies. These components of the pressure fluctuations acting upon 
the surface generate small forced oscillations, and the amplitude of any 
Fourier component of the surface displacement depends upon the amplitude 
of the corresponding component of the forcing pressure fluctuations. 
But the response of the water surface to the various Fourier components 
of the pressure field is not uniform, since certain combinations of wave- 
number and frequency in the components of the surface displacement are 
excited more readily than others. In particular, if the pressure distribution 
contains components whose wave-numbers and frequencies coincide with 
possible modes offree surface waves, then a type of resonance occurs, and 
the continued presence of these components in the pressure distribution 
(although their amplitudes may not be large) generates surface waves whose 
amplitude continually increases. 

The nature of this resonance can be seen most clearly by considering 
the motion in a frame of reference moving with the convection velocity 
of the surface pressure distribution. Suppose we can, for the moment, 
neglect the evolution of the pattern of stress fluctuations so that the 
distribution is stationary in the convected frame of reference. The various 
components generate wavelets of small amplitude which propagate along 
the surface in all directions ; but for a given convection velocity (provided 
it is not too small) there are two particular wave modes that propagate in 
the direction of the wind at the convection velocity. These particular 
wavelets remain stationary with respect to the pressure distribution which 
produced them. The phase difference between these particular wavelets 
and the Fourier component of the pressure field with the same wave-number 
remains fixed, so that the conditions which gave them birth remain to 
ensure their continued growth. 

But this is an over-simplification, because the evolution of the stress 
pattern usually cannot be ignored. If we make a two-dimensional spatial 
Fourier analysis of the surface pressure distribution with respect to axes 
moving with the convection velocity, the amplitude and phase of each 
component varies slowly in a random manner with time. The particular 
wavelet which is stationary with respect to the convected reference frame 
is still subject to a pressure component of the same wave-number, but one 
whose phase now wanders and whose amplitude varies. However, the 
average amplitude of the wavelet continues to increase, although we should 
expect the variation of mean square amplitude at this wave-number to be 
slower than it would be if the phase were constant. This process of 



On the generation of waves by turbulent wind 423 

statistical development through a random influence is already familiar in 
the contexts of diffusion and random-walk problems. 

The  mathematical problem in which this process appears has already 
been formulated in the previous section, and certain assumptions will now 
be made to facilitate the analysis. We should like to be able to assume 
that the statistical properties of the applied pressure fluctuations are 
independent of the waves already generated. We will therefore endeavour 
to determine the conditions under which this is likely to be true. Initially 
the water is at rest, so that in the very early stages of wave growth (i.e. the 
' initial stage ' of 8 3) this assumption can clearly be made as a first approxi- 
mation, since the initial pattern of ripples has not yet grown large enough 
in amplitude to have a significant effect on the wind. Presumably, however, 
the pattern of ripples soon reaches some sort of statistical equilibrium, and 
there is evidence (see Ursell 1956, p. 240) that the roughness length x, 
of the surface is determined by these short steep ripples rather than by 
the height of the longer waves that subsequently develop. It seems, then, 
that after quite a short duration these ripples begin to exercise a profound 
influence upon the mean velocity profile and the other mean properties 
of the turbulent wind. However,. a much greater time is taken for the 
development of the longer gravity waves in which we are more interested. 
It seems, therefore, that when the duration is sufficiently long, the 
components of the pressure distribution generating the longer gravity 
waves are independent of the waves of this kind already present. T o  
summarize, this assumption seems justified under two sets of conditions : 
(i) when the duration of the wind is very small, and (ii) for gravity waves 
when the duration is large. I n  both cases, this assumption must be 
expected to fail when the wave steepness becomes too great, since, for 
example, sheltering effects may then become important. 

As a further simplification, the viscosity of the water will be neglected, 
since it is probably unimportant for all but the shortest waves over moderate 
intervals of time. The  motion, which is envisaged as starting from rest, 
is then irrotational. Consideration is restricted to waves whose mean- 
square slope is small, so that the surface boundary condition can be linearized. 
Finally, for definiteness and convenience, the surface pressure fluctuations 
are assumed to be statistically homogeneous over regions of the surface 
whose extent is comparable with the correlation areas of the atmospheric 
turbulence, and, after the initial instant, to be statistically steady. 

2.2. The equations of motion 
I n  this problem it is convenient to express the surface pressure fluctuations 

and surface displacements in terms of their Fourier components. The  
pressure fluctuation p and displacement f are stationary random functions 
of position x = (xl, x2) in the surface plane, so that simple Fourier transforms 
do not exist. However, we can invoke a more effective technique, used 
widely in the theory of random functions (see, for example, its application 
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to turbulence theory in Batchelor (1953)), by defining the Fourier-Stieltjes 
transform 

((x, t )  = I dA(x, t)eix .=, (2.2) 

where the integration is over all wave-numbers x in the plane. The two- 
dimensional instantaneous spectrum of the surface displacement is the 
Fourier transform of the covariance 

W )  = t ( X ) E ( X  + r), 
which decreases to zero rapidly as [r[ -+ 03, so that its Fourier transform 

@(x)  = (27~)-~ E(r)e-ixwr dr, 

where dr represents dr,dr, and the integration is over the entire surface 
with x fixed, does exist in the ordinary sense. From the inverse of this 
relation, it can be shown that the spectrum is given in terms of the 
Fourier-Stieltjes transform by 

J 

where the asterisk indicates the complex conjugate. Similar expressions 
can be written down to specify the pressure fluctuations on the surface. 
The two-dimensional Fourier-Stieltjes transform 

is related to the spectrum function lT(x, t )  of the surface pressure 
fluctuations by the expression 

n ( x ,  t )  = (27~)-~ I p(x, t’)p(x + r ,  t‘ + t )  cix. dr, 

- dw(x, t’)  dm*(x, t’ + t )  - 
dK1 d~~ 9 

which is a function of the wave-number x and time separation t. 

a potential q4 can be defined such that 
The motion in the water has been assumed to be irrotational, so that 

u = V $  and V2q4=0, (2.6) 
where u is the velocity vector. The surface boundary condition for waves 
of infinitesimal height is 

where p is the density of the water, T the surface tension at the interface, 
g the gravitational acceleration, 5 the surface displacement, and x is the 
vertical position coordinate to be measured downwards from the undisturbed 
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surface level. It is convenient to  express this equation in a frame of reference 
moving with an arbitrary velocity U, and it becomes 

The normal velocity of the surface is dfldt, or in the moving frame of 
reference, 

(& - iyj&) ,$ = [g] = 1 (dA'-ix.U dA)eiX.X, (2.9) 
a = o  

where the representation (2.1) is used, and where the accent represents 
time differentiation in the convected frame of reference. The irrotational 
motion in the water is specified by the solution of V2q3 = 0 with the boundary 
conditions that 4 + 0 as x --f 00, and that at 2: = 0, &$/ax is as given by 
(2.9). This solution is (see Phillips 1955) 

+ =  - 1 dA'-ix*UdAe-eeix.x (2.10) 
K 

where K = 1x1. 
Fourier-Stieltjes transforms as 

The equation (2.8) can now be expressed in terms of the 

dw T - = -[: - i x . U ] ' @  - g d A -  - ~ 2 d A ,  
P K P 

(2.11) 

K 
or dA" - 2inl dA' - (n? - n:) dA = - - dw(t), (2.12) 

P 
where n, = x . U = KUCOS K, n2 = (g" + T ~ ~ / p ) l / ~ .  (2.13) 
Equation (2.12) describes the growth of each component of the surface 
displacement in terms of the corresponding component of the pressure 
distribution. If we now specify U as the convectionvelocity of thecomponent 
of the pressure field of wave-number x ,  the quantity n, represents the 
frequency, in radians per second, of a wave with wave-number K and speed 
U . x / K  = U, cos cc in a direction at an angle u to that of the wind, and n2 is 
the frequency of free surface waves of wavelength 2'rr lK. 

The fundamental equation (2.12) specifies the development with time 
of the Fourier-Stieltjes transform dA(x, t )  of the surface displacement in 
terms of the transform dw(x,t) of the pressure fluctuations, which is, 
after the initial instant, a stationary random function of time. Its solution, 
subject to the initial conditions appropriate to an undisturbed surface at 
rest, namely dA = dA' = 0 at t = 0, can be expressed as 

- dw(-r)exp{ - i(n,  + n2)7} dT - 

or 

d A ( ~ , t )  = - dw(.r)[exp{ - i(nl - n2)(7 - t ) )  - 

- exp{ - i(nl + n2)(7 - t)}]' d ~ .  (2.14) 
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This solution provides the common starting point for the investigations 
of the next two parts of this paper. It illustrates how the amplitude of each 
Fourier-Stieltjes component of the wave pattern is dependent upon the 
history of the applied pressure distribution from the initial instant t = 0. 
The  development of each component of the wave field falls naturally into 
two stages : the intial stage over values of time t < O ( x )  (i.e. the development 
time of the fluctuations in pressure of wave-number x ,  or the time scale 
of dw(x,  t) in the convected frame of reference), and the second or principal 
stage of development for which t 0 and during which most of the growth 
of gravity waves takes place. The  properties of the waves in each of these 
stages will be discussed in turn. 

3. THE INITIAL STAGE OF WAVE DEVELOPMENT 

3.1. The initial response of the water surface 
We define the initial stage of development as the period of time for 

which t O ( K ) ,  so that over this range of t ,  dw(x,t) in the convected 
frame of reference varies little from its value at the initial instant. I n  the 
integration of the general solution (2.14), dw(x) can be considered indepen- 
dent of time, and the solution becomes 

dA(x,t) * i K l z r ) j b  - (exp{ - i(n, - n2)(7 - t)) - exp{ - i(n, + nJ(7 - t)}) d7, 

- - exp( - i(n, - n2)t} + 

+ -  n1- 2% n2 exp{-i(nl+n2)t}} . (3.1) 

From this, there follows a relation between the wave spectral function @ ( x )  
and the two-dimensional, simultaneous pressure spectrum n ( x )  f n ( x ,  0) ; 
for 

we have 

cos(nl + n,)t - @(K,t) =i; 2 2 + - - -  cos(nl - n,)t + - KW(X) (2 nf n,+n, n1- n2 
p (nl-r@ 2 2ng n2 n2 

If we write 

v1 = n, t = Kt U, cos u, v2 = n2 t = (gK + T~~/p) l /z t ,  (3.3) 
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so that the wave spectrum can be expressed in the form 

The  function <D(x,t) is therefore determined, when t @ O(x) ,  jointly by 
the spectrum of the imposed pressure fluctuations n ( x )  and by the response 
factor I?, itself a function of K through v1 and v,, and of t ;  the balance 
between these two factors must always be taken into account in considering 
the wave generation in the initial stage. The  function K ~ I I ( x )  has its 
maximum when K is large, of the same order as the wave-numbers associated 
with the dissipating eddies in the atmospheric turbulence. A brief examina- 
tion of (3.4) suffices to show that in the (vl, v,)-plane, is large near the 
line v1 = v2 and in regions where vJv2 is large. 

Wave-numbers of the first class, for which v1 = v,, are such that the 
convection velocity of the pressure distribution is equal to the velocity 
of free waves with these wave-numbers in the direction of convection; 
for, from (3.3), 

Because of the factor ~ ~ l I ( x ) ,  the amplitude of these waves is significant 
only when K is large (i.e. the wavelength h is small), which in turn implies, 
from (3.6), that U,coscc should also be small. Waves, or perhaps more 
properly ripples, of this type are generated immediately after the onset 
of a gust of sufficient strength. Their direction and speed is such that they 
remain in phase with the applied pressure distribution during this initial 
period, developing by the simple resonance mechanism described in 0 2.1. 
These waves can conveniently be called ‘ resonance waves’. Wave-numbers 
of the second class, for which v1 % v,, are associated with the forced 
oscillations of the water surface produced by the pressure fluctuations, 
and it will be shown later that their amplitude does not increase with 
time t beyond a small upper bound. 

qx, t )  = r K 2 r q x ) t 4 / p .  (3.5) 

u, COS M = (g/K + TK/f3)1’2 = C ( K ) .  (3.6) 

3.2. Resonance waves 

can be found in the following manner. Let 

and, on substituting this into (3.4), we have 

A simple approximation to the response factor (3.4) when v1 + v2 

x = v 1 - v 2 ;  (3.7) 

r = (2v2 + x ) - 2 x - 2  
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If v2 3 1 ,  that is, if t n,l or (2~)-1 times the period of free waves of 
wave-number K ,  the second term is negligible and the wave spectrum is 
given approximately by 

K 2 n ( X ) t 2  1 - COS X 
@ ( K , t )  = - 

2p24 x2 
when n ~ l  -g t < 0 and nl + n2. 

The existence of a range of values of t satisfying this condition clearly 
requires that n;l is less by one or two orders of magnitude than 0. Since 
n, = n2 for resonance waves, an equivalent statement is that the wave- 
length h of the surface disturbance is very much less than the distance 
travelled by the convected pressure distribution in the time 0. This 
condition is likely to be satisfied best when h is small, in the range corre- 
sponding to ripples and short gravity waves. (If, for example, O ( X )  is 
of the same order as the time scale of the eddies of wave-number K in the 
equilibrium range, then the condition can be expressed as 

h = 2 T / K  < ucO N uc€-113K-213 

(where E is the rate of energy dissipation) or K 9 87r3~/U:.) 

is determined by the equation x = 0, or, from (3.3), 
The wave-number K in any direction u for which @(x)  is a maximum 

T K ~ / P  - K U,2 cos2u +g = 0, (3.9) 
which, for each value of U,cosa above a certain minimum, gives two 
resonant wave-numbers, one corresponding to a gravity wave and one 
to a capillary wave. This is illustrated in figure 1. The solid curve C ( K )  

gives the speed of free surface waves as a function of wave-number K and 
the broken line U c ( ~ )  a typical convection speed of the components of the 
pressure field of wave-number K ,  which, as we have seen earlier, is a function 
which may decrease slowly as K increases. The exact shape of U,.(K) depends 
upon the surface roughness, and the curve in figure 1 is for illustrative 
purposes only. In  the direction u = 0, that of the convection velocity, 
resonance waves occur near the wave-numbers such that U,(K) = c(K),  
given in figure 1 by the points A and B. As u increases, since the condition 
for resonance waves is that U,(K)COS~ = c ( K ) ,  the resonance wave-numbers 
are found by translating the dashed curve downwards, and the intersections 
of the two curves approach each other until at a certain critical angle Q,, they 
coincide. For values of u greater than a,,, no resonance waves are possible. 
If, as one might expect under normal atmospheric conditions and with an 
‘ aerodynamically-smooth surface ’ appropriate to the initial period of 
development, the dependence of U, upon K is not very rapid except when K 

is large (of order unity), the coincidence point will occur near or a little 
to the right of G in this diagram, which marks the minimum velocity of 
free waves under the influence of both gravity and surface tension. It can 
readily be established from (3.6) that this minimum velocity is given by 

Cmin = (4gT /~ ) l ’~ ,  (3.10) 
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so that the wavelength of the critical waves is approximately 

A,, .i- 27-4 T/pg)1'2. (3.11) 
The critical angle xCr, i.e. the maximum angle from the direction of the wind 
at which resonance waves are generated, is given by 

xcr =i= cos-l(cmi,/U,) = C O S - ~ ( ~ ~ T / ~  U31'4, (3.12) 

where U, is the convection velocity of the wave-numbers K, i.e. the mean 
wind velocity at a height of approximately K - ~ .  Taking the values for 
water : p = 1 gm ~ m - ~ ,  T = 73 gm sec2, and taking g = 980 cm s e r 2 ,  we 
have cmin = 23 cm sec-l and the critical wavelength A,, = Z~T/K, ,  = 1.7 cm. 

Figure 1. 

Of these possible resonance waves, not all may be excited, since for 
some wave-numbers K ~ ~ ( K )  may be negligible. I t  is well known that in 
turbulent flow there is a certain maximum wave-number K m a X  of the velocity 
fluctuations, or minimum eddy size, which depends upon the rate of kinetic 
energy dissipation per unit volume in the flow near the surface and upon 
the kinematic viscosity v of the fluid. If the mean velocity gradient is not 
too large, KmaX - ( E / v ~ ) ~ / ~ .  The  surface pressure fluctuations 6 d 1  also 
have a minimum scale, or maximum wave-number, of the same order of 
magnitude, so that for values of K greater than KmaX, H(K) is negligible. 
Not a great deal of relevant experimental information is available con- 
cerning the magnitude of E under the conditions with which we are 
concerned, but for a mean wind speed of order 1 msec-l at a height of 



4 3  0 0. M .  Phillips 

1 metre, a rough estimate guided by experiments such as those of Taylor 
(1952) suggests that the maximum value of K is of the order of 10cm-1 
or less. Thus, in figure 1, only those wave-numbers below a band such 
as DE are excited. In  the direction u = 0, running before the wind, the 
only resonance waves that occur are the gravity waves corresponding to 
the point B ;  the wavelength of the capillary waves given by the point A 
is too small for excitation to occur. Even if the turbulence were more 
vigorous, with a smaller minimum eddy size, the growth of the very short 
capillary waves is hindered by direct viscous dissipation which becomes 
important for very short wavelengths. Under the conditions illustrated 
in this figure, no true capillary waves at all would be generated, the smallest 
wavelengths being little less than !Icr. 

It will now be shown that the angle ucr is associated with limiting 
behaviour in yet another respect. Not only does it represent the maximum 
angle from the wind direction at which resonance waves can be generated, 
but also it is found that the amplitude of waves moving in this direction 
is greater than those in other directions with u < cccr. The  curve x = 0 
gives the locus of the points in the wave-number plane for which the 
maximum amplification of resonance waves can occur, and for a given 
value of U ,  is of the form shown in figure 2, where the 1-direction is taken 
as that of the wind. For angles cc > M,, there are no resonance waves, 
and for angles ci < ccer there are two possible values of K for which resonance 
may occur, although one may not be excited if the minimum scale of the 
turbulence is too large. The  maximum wave-numbers that occur in the 
surface pressure distribution can be represented by the arc AB, and only 
the wave-numbers near the curve x ( x )  = 0 and within the sector OAB 
(and its mirror image in OA)  will be excited as resonance waves. The  
width of the resonance band is, as (3.8) shows, determined by the range 
of values of x for which (1 -cosx)/x2 is significant. The  limits of this 
range can conveniently be taken as X(K) = 

X(X) = t(K u, COS tc - (gK + TK3/p)’”), (3.13) 
and these limits, when n,t $ 1, are illustqted by the dotted lines in 
figure 2. It can be shown from (3.13) that the thickness AK of the resonance 
band at the wave-number K is such that IAxI < K when t 9 n;l and 
decreases as t l .  As time goes on, the range of excited wave-numbers 
near the curve X(H) = 0 becomes narrower and narrower while the magnitude 
of the wave spectral function @ ( x )  along this curve rapidly increases. 

2r ,  where, from (3.7), 

Now the mean-square surface displacement is given by 

F = @ ( x )  dx, (3.14) 

the integration being over the whole x-plane. But the integrand is 
significant only in the part of the strip near the curve x ( x )  = 0 lying within 
the quadrant OAB. A simple and useful approximation to the integral 
can be obtained by taking locally orthogonal coordinates s, being the 
distance along the curve x ( x )  = 0 from the point D, and x specifying the 
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Since the effective width of the resonance distance normal to  the curve. 
band is small, the Jacobian in the expression 

(3.15) 

Figure 2. 

can be evaluated along x = 0. 
as k a. 

The  limits of integration of x can be taken 
From (3.13), it can be shown that, when x = 0, 

(3.16) 1 a K  2KucCOSU au 1 
== t(g - ~ K 2 / p ) '  & = - tKUc sin u7 

aK g- T K ~ / P  _ -  aK ~Ufs in2cc  
z- - 9 '  as ~9 ' J 

where B2 = (KU; sin 2 ~ r ) ~  + (g - T K ~ / P ) ~ ,  so that 

- 

4u,cosu "I a(,>$> x = 0 = t 9  - 
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The contribution to the mean-square surface displacement per unit length 
of the resonance band is simply 

- 277. K n ( K ) .  t 
- 

p 2 u , . 9 c o s ~ )  

and the contribution per unit angle in the wave-number plane, or the 
directional distribution of wave amplitude in the physical plane, is found 
by multiplying this expression by as/&. With the aid of (3.16), this gives 

277. K 2 r I ( K ) .  t 
y(a) = p2 U, cos a(g - T K ~ / ~ ) '  

(3.17) 

where K and a are related by K U, cos a = ( g K  + T K ~ / ~ ) ' / ' .  
From this result, (3.17), most of the important properties of resonance 

waves in the initial stage can be found immediately. In  directions a < a,, 
the resonant wave-number K < K,, = (pg/T)li2, so that (3.17) becomes 
approximately 

2 T K 2  n ( K ) t  Y(.) = 
p2g u, cos a' 

(3.18) 

However, as K + K ~ ~ ,  T K 2 / p  -+g, and from (3.17)) the directional distribution 
function '?"(a) becomes infinite at acr. When ( K , ~ - K )  is small, (3.17) gives 

T K 2 n ( K ) t  p l i 2  
(K,, - K)-'. 

Y ( a )  = p U,COSU 0 gT 
But from (3.13), on the curve x = 0 near aCr, 

so that near the critical direction aery the directional distribution function 
of the wave motion is given approximately by 

(a,, - I%)-'/Z. (3.19) 

The form of Y(M) is shown in figure 3. As a increases from zero towards 
acr, Y(a) increases towards its (integrable) infinity; and when a > a,,, 
'?"(a) is zero to this approximation. 

The mean-square surface displacement is obtained by integrating Y(a)  
over all possible propagation angles a and wave-numbers K subject to the 
condition x = 0. Near a = a,, the directional density of the wave distribution 
is large and should produce wave patterns more pronounced in this direction 
than in others. The reason for this accumulation of waves in the direction 
acr is, of course, that the range of wave-numbers that propagate at speeds 
within, say, 6c of the minimum speed of surface waves is proportional to 
( 6 ~ ) ' ' ~  only ; within an angle 6a of a,, the range of wave-numbers propagated 
is proportional to (SQ)~/~,  so that the directional density of the wave pattern 
is proportional to (S~C)-~'~. 
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The angle between the direction of propagation of these waves and 
that of the wind, i.e. Ncr = C O S - ~ ( C ~ ~ ~ / U , ) ,  will be small only for light airs. 
I t  is doubtful whether a wind of, say, 30 or 40cmsec-I would contain 
turbulent components whose scale is as small as the 1.7 cm necessary to 
excite such waves, and unlikely that they would be observed at small angles 
NCr under natural conditions. As the wind velocity becomes larger and 
contains smaller-scale turbulent components, acr also increases, and these 
critical angle waves may travel almost at right angles to the wind! Under 
the conditions visualized in this paper, with a large fetch and sudden onset 
of the wind, this wave pattern would be a transient one, and would 
disappear as the waves developed beyond the initial period. 

PROPORTl ON AL 

Figure 3. 

However, it is likely that the waves are similar to those generated in 
steady winds at a small fetch, since the time of development of each wave 
is small, and the growth would be analogous to that discussed here. 
Assuming a correspondence between the two cases of short wind duration 
and short fetch, an explanation of some of Roll’s (1951) observations can 
be given. These experiments were made under natural conditions on 
pools left in tidal mud flats at Neuwerk. On one occasion, when the wind 
velocity at a height of 35 cm was 195 cmsec-l, Roll observed a rhombic 
wave pattern of wavelength about 1.7 cm. Unfortunately he does not 
record the shape of the rhombic pattern, but this observation seems 
consistent with the establishment of the two trains of resonance waves at 
angles arc to the wind direction, as predicted by the theory. On two other 
occasions, when the wind velocity was approximately 400 cm sec-l, waves 

F.M. Z G  
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with A = 1.7 cm were observed with their crests nearly parallel to the 
direction of the wind, which again is consistent with the theoretical 
predictions. However, many more careful experiments will have to be 
made before quantitative comparison with this part of the theory will be 
possible. 

3.3. The question Of Umin 

It is perhaps appropriate at this point to offer some remarks concerning 
the idea that there exists a minimum wind speed capable of raising waves. 
It is natural that this concept should arise if the problem is considered as 
one of stability and many attempts to determine Umin experimentally 
have been made in the past. Ursell (1956), however, discounts the idea, 
pointing out that any turbulent air motion will necessarily generate some 
surface displacements, however minute, and that there seems to be no 
reason why this should not be described as a wave motion. He quotes a 
table of ‘measured values of Urnin’ ranging from 40cmsec-l (Roll 1951) 
to above 1200 cm sec-l (Keulegan 1951). 

According to the present theory, the minimum wind velocity capable 
of raising resonance waves is 23 cm sec-l, but waves will actually be generated 
only if there exist near the surface turbulent fluctuations of sufficiently 
small scale. But, as Ursell points out, turbulent motion in the air will 
generate surface displacements irrespective of the mean wind velocity. 
For example, if Up = 0, then in (3.4) v1 = 0 and 

1-cosv, 2 

r = (  v; ) )  
so that, when t < 0, 

K 2 n  K 
@(w, t )  = -+ (1 - cos nz t ) 2  

P n2 

and 

(3.20) 

(3.21) 

The mean-square displacement of these forced waves is therefore bounded 
and unlike the resonance waves they do not continue to develop in time. 
To the eye they may appear as a shimmer or ruffle on an otherwise glassy 
surface. When v1 % v2, a similar system of forced oscillations can also be 
found. 

4. THE PRINCIPAL STAGE OF DEVELOPMENT 

4.1. The wave spectral function 
The principal stage of development for a wave-number K is defined as 

the period during which the time elapsed from the initial instant is greater 
than O ( H ) ,  the development time of d w ( w , t ) ,  but not so great that the 
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amplitude of the wave at this wave-number has increased to such an extent 
that the infinitesimal wave theory ceases to apply. 

We return to the fundamental solution (2.14), namely 

dA(x, t )  = 2n dw(x, T)[exp( - i(n, - n2)(7 - t ) }  - 
P 2  0 

- exp{ - i(n, + n2)(. - t ) } ]  dT. (4.1) 
iK s 

The wave spectral function @(x,  t )  is given by 

dA(x,  t )  dA+(x, t )  
dK1 dK2 @(x , t )  = 

+ exp{ - i(n, - n2)(. - T’)} - 2 exp{ - inl(T - T’)}exp{ - in2(T + 7’)) x 

(4.2) 
If the variables of integration are changed from T ,  T’ to T,, T ~ ,  where 
T~ = T - 7 ’ ,  T~ = T + T ’ ,  it is found that the asymptotic form, as t -+ co, 
of the expression (4.2) is 

t )  - 41/2p2n,2 

x cos 2n2 t }  dTd7‘. 

K2t 
J” n ( x ,  .){expi - i(n, + n2)T} + exp{ - i(n, - n2)7>> dT, 

- - to 

(4.3) 
where the suffix has now been dropped from 7,. This asymptotic form 
can be written in a simpler manner if we interpret the integral in terms of 
time scales in frames of reference themselves moving with respect to the 
convected frame in which the analysis has been made. If a spatial Fourier 
transform F(x,  T )  of some covariancef(r, T),  a function of space separation r 
and time interval T, is defined as 

f(r, T) = F(x,(-r)e’”. dx, 

then, in a reference frame moving with a relative velocity V, such that 
r = q+vT, we have 

f(q, T )  = F(x,  T).&x*q$-n*Vv) dx, 

so that 

the q-coordinates being in the moving frame of reference. 
spectral function in the moving frame is 

Thus the 

e i x .  VT F ( , 7 1 9  

where F(x ,T)  is the spectral function in the original frame. The integral 
time scale, for the wave-number K, in the moving frame, is therefore given 
by O(x, V), where 

m 

F(x,  T )  dT = 2 F ( x ,  o)@, v). (4.4) e i x .  vr 

2 G Z  
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Equation (4.3) can therefore be expressed as 

where, from (4.4), V, and V, are given by 

- X . V i  = ni+n ,  = X . U , + ( g K +  TK3/p)1’2, 

- X .  v, = ‘721 - (4.6) 

X . ( u c + v l )  = -KC(K), X . ( u c + v z )  = KC(K), (4.7) 

= X .  u,, - (gK f TK3/P) l i z ,  J’ 
so that 

C ( K )  being, as before, the speed of free surface waves of wave-number K. 

Notice that the velocities V (relative to the convected frame) of the frames 
of reference in which the time scales are to be measured are each specified 
by only one scalar equation, so that either the speed V of this frame, or its 
direction of motion can be chosen arbitrarily. For convenience the 
direction of V can be chosen to coincide with that of U, and so 

(u, + v 1 )  COS U = - C(K) ,  (u, + Vz) COS U = C(K).  

Hence 
The absolute speeds of the frames of reference in which the scales 0 are 
to be measured are C(K)/COSU and -c(K)/cos~,  the negative sign implying 
motion in the direction against the wind. It is evident that the time scale 
of the pressure fluctuations observed in a reference frame moving against 
the wind is less than that moving with the wind at the same speed, so that 
0(x, V,) < O(x, Vz) ,  and the expression (4.5) can be approximated by 

V 1  = - u, - C(K)/COS a, Vz = - u, + C(K)/COS U. (4.8) 

The speed V = C(K)/COS a is just equal to that of the waves of wave-number K 

propagating in the direction u, observed along a line parallel to the wind, 
so that the integral time scale represents the time scale of the variations in 
phase difference between the pressure fluctuations and the wave pattern, 

The expression (4.9) is the basic result of this part of the paper, and 
from it several important deductions can be made immediately. Since 
the only way in which the elapsed time t enters the right-hand side is in 
the explicit linear factor, the mean-square wave height is directly propor- 
tional to time in the principal stage of development. Furthermore, the 
shape of the wave spectrum is independent of time, at any rate until the 
development is such that the mean-square slope (governing the importance 
of non-linearities in the equation of motion) associated with any group of 
wave-numbers becomes too large. It will be seen later that this occurs 
first at the shorter wavelengths excited, and the contribution from these 
to the total mean-square surface displacement is small. Thus the direct 
proportionality of to t should continue until the mean-square slope of 
the largest waves attains a limiting value, after which time an equilibrium 
structure is presumably attained. 
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However, a direct application of (4.9) is hindered by the presence of 
the factor B(x, V )  about which little is known. When V = U,, so that the 
wave pattern moves with the convection velocity of the pressure fluctuations, 
we have the true resonance waves which figured in 8 3.2, and the time scale 
O(x, V )  is equal to the convected or natural time scale 0. The use of the 
capital letter in this latter case emphasizes the particular significance of 
this time scale. However, when V + U,, and usually V < U,, the time 
scale in the reference frame moving with speed V is less than 0, since it 
is governed by the rate at which the convected fluctuations are swept past 
the point of observation. A rough approximation to O(x, V) ,  but one which 
is probably satisfactory, is to take it as the length scale K - ~  divided by the 
relative speed of the convected pressure fluctuations and the waves ; thus 

1 
1 

K( u, - C( K)/COS a )  ’ q x ,  V )  =i: (4.10) 

when U, is greater by about a factor of about two than C(K)/COSM. More 
properly, the time scale represented by the expression on the right is a 
differential scale, whereas B(x, V )  is defined as an integral scale. However, 
the two scales should be proportional, and probably of the same order of 
magnitude, so that the approximation (4.10) can be used in the absence 
of better information, provided the results are interpreted as being valid 
only to orders of magnitude. 

For gravity waves, ng = g K ,  so that, from (4.9) and (4.10), we have 

(4.11) 

When U is greater than C(K)/COSU by a factor of about three or four, this 
expression can be further simplified to 

so that we have immediately 

(4.12) 

I 

and, for the mean-square slope, 

(4.13) 

(4.14) 

Further reference will be made presently to these particularly simple 
and important results. At this stage we must consider the conditions 
under which the assumption that U, 9 C(K)/COSM is likely to be valid for 
most of the range of wave-numbers over which the spectral function @(x)  
is significant. Support is given to the approximation (4.10) by the 
observation that for moderate winds over all but the longest durations, 
the wave spectrum is appreciable only over wave-numbers for which the 
condition U, > C(K) is satisfied. It is instructive, however, to see why this 
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is so by examining the relevant meteorological and other evidence on the 
surface pressure fluctuations. The dependence of this function on w is 
determined, as (4.9) shows, jointly by O(w, V )  and the pressure term, which 
for gravity waves where nz = g ~  is of the form KIT(%). It is unfortunate 
that the properties of the spectral function n ( x )  of the imposed surface 
pressure distribution are at present almost unknown, though by using the 
results of some recent atmospheric measurements of the turbulent velocities 
(made over land, alas, not over the sea), some of its qualitative properties 
can be surmised. But one important property that can be established without 
recourse to these experiments is that when K = 0, n(w) = 0 ; this is proved 

Figure 4. 

in the Appendix to this paper. Thus in any direction u in the K-plane, 
II(K) rises from zero at the origin to a maximum and then decreases again 
to zero as K approaches its value for the dissipating eddies. We are now 
faced with the question of deciding the order of magnitude of the values 
of K for which IT(%) is a maximum. The only guide we have at present 
are experiments such as those of MacCready (1953a, b), Taylor (1955) 
and Ellison (1956) on velocity autocorrelations over land in winds within 
the range 1 to 5 msec-l. These point to a longitudinal scale of the energy- 
containing eddies in the lowest few metres of the order 10 m (the lateral 
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scales are considerably smaller), that is to say, the peak value of the velocity 
spectrum under these conditions occurs at wave-numbers of order 
2.ir/103 = 6 x Apparently this scale does not depend greatly 
upon wind velocity or distance from the ground. I n  isotropic turbulence, 
Batchelor (1951) has shown that the scale of the pressure fluctuations is 
rather less, about half, of that of the velocity fluctuations; and if a similar 
situation exists in the atmosphere, the maximum value of II(x) may occur 
for values of K of about cm-l. Furthermore, atmospheric turbulence 
generally contains a large range of eddy sizes, so that the spectra tend to 
be fairly broad. These considerations make it likely that II(x),  in a given 
direction u in the K-plane, is a function of K of the shape illustrated in the 
top portion of figure 4, with a broad maximum near K = cm-l, decreasing 
to  zero for both large and small values of K. The  function KII(H), being 
weighted towards the larger values of K ,  has its maximum at a larger K, and 
would be expected to be of the form also illustrated in figure 4. 

The  time scale O(x) has its maximum when K has such a value that the 
waves of this wave-number move with the convection velocity U,; then 
O(x) = 0, the development time of the pressure fluctuations. For a wind 
speed of, say, lo3 cm sec-l, a fresh sailing breeze, the maximum for angles u 
in the range -6.. to +.ir (containing most of the wave energy) occurs when 
K - lop3 cm-'. For larger and smaller values of K away from this maximum, 
O(x) is given by (4.10), so that the function has the form of the solid curve 
in the upper part of figure 4. 

The  wave spectrum is given by the product of the functions B(K)  and 
K ~ ( x )  represented by the curves in this diagram, and it is clear that for a 
wind speed of lOmsec-l the range of wave-numbers PP', over which the 
approximation (4.10) is insufficient, contributes little to the integral J @(x)  dx. 
The  result (4.12), therefore, would be expected to give a good approximation 
to the wave spectrum except for the smallest values of K ,  whose contribution 
to  the mean-square wave height is small. For wind speeds greater than 
the value 103cmsec-l chosen for purposes of illustration in figure 4, the 
wave-number for which U, = C ( K )  decreases as W2,  so that the curve O(x) 
is translated to the left. It is unlikely that the reciprocal of the scale of the 
pressure-generating eddies should decrease with wind speed as rapidly 
as this, so that the range of wave-numbers PP' contributes even less to the 
integrated wave spectrum, and the approximations inherent in (4.12) and 
(4.13) become more accurate. However, when the wind speed and associated 
convection velocity is small, say 1 m sec-1, it is probable that the range PP' 
will occur at a point where the value Of  K I I ( x )  is no longer negligible. These 
circumstances are illustrated in figure 5, and the wave spectrum calculated 
from the curves e(x) and KI I (x )  is clearly no longer similar in shape to n(x) 
but possesses a more pronounced peak. I n  light winds, therefore, the 
wave spectrum is narrower, and presumably the wave pattern more regular, 
a deduction which would appear to be substantiated by visual observations. 
A similar situation exists for higher wind velocities when u is very nearly 
a$.., and the curve O(x) is displaced considerably to the right, but the 

cm-l. 
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range of angles over which the approximation (4.10) fails is small and again 
contributes little to the integrated wave spectrum, or to p. 
4.2. Termination of the principal stage of development 

There is another effect which limits the validity of (4.12) and (4.13) 
and which we have not yet considered. As the wave pattern develops, the 
mean-square slope of the waves increases linearly with time. After a certain 
interval, the mean-square slope associated with some band of wave-numbers 
becomes so large that the waves can no longer be described by a linear 

I 

Figure 5.  

theory. The non-linear processes which then become important tend, 
among other things, to limit the maximum surface slope that can be 
attained. Without a detailed examination of the role of the non-linearities 
in modifying the wave spectrum, it is not immediately clear exactly what 
criterion determines the importance of the non-linearities, although it is 
very reasonable to suppose that it concerns the value of the slope spectrum 
K ~ F I ( X )  in some manner. There is some evidence (Dane1 1956) that the 
effect is appreciable when the mean-square surface slope = J K ~ @ ( x )  dx 
attains a certain value. But whatever the exact criterion might be, provided 
only that it involves a limitation on the slope spectrum, which is largest 
when the wave-number K is large or the wavelength h small, its effect will 
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clearly be felt first in this range of K ; the actual wave spectrum will for these 
wave-numbers be smaller than that predicted by the linear theory, and 
instead of continuing to grow will presumably attain some sort of equilibrium. 
As time goes on and the wave amplitudes at other wave-numbers increase, 
the wave-numbers contributing significantly to the slope spectrum extend 
to smaller and smaller values ; so that the effects of the non-linearity gradually 
spread to the wave-numbers for which the wave spectrum @ ( x )  itself is 
appreciable. This process whereby the principal stage of development of 
each wave-number is ended in turn implies that the value of h for which 
@(x)  is a maximum increases with time, since the longer waves continue to 
grow while the amplitude of the shorter waves is limited. A detailed 
analytical description of this process has not yet been attempted, but it 
seems likely to provide part of the explanation of the observed increase 
with time in the dominant wavelength of the surface displacement. 

An important consequence of these remarks is that the result (4.13) 
remains valid until the wave-numbers near the maximum of the linear 
spectrum @(x)  become affected by the non-linearity, although over a large 
range of larger wave-numbers, or smaller wavelengths, the principal stage 
of development has terminated, and the expression (4.14) for the mean- 
square slope has become seriously inadequate. The reason is, of course, 
that the wave-numbers contributing greatly to the slope spectrum make 
little contribution to the wave spectrum. 

4.3. Comparison with observations on the wave field 
The most important result of 54.2 from the practical point of view 

is (4.13). In  order to compare this result with the oceanographic measure- 
ments that are available for conditions of finite duration, we must obtain 
an estimate for in terms of the quantities that determine the mean velocity 
profile of the wind. It has already been pointed out that these relevant 
parameters are the friction velocity uI and (for aerodynamically rough 
flow) the length xo, so that the mean-square pressure fluctuations at the 
surface should be expressed as 

p 2  = Apzu:, (4.15) 

where A is a numerical constant to be estimated and po is the density of 
the air. 

is of the order of tp :  ?V2, where 
v and V are turbulent and mean velocities representative of the region 
concerned. The atmospheric measurements of MacCready (1953 b) are 
helpful in applying this expression and obtaining an estimate for A. Under 
conditions of almost neutral thermal stability over land with zo of the order 
0.1 cm, he found that in the lowest few metres $ = uf - t$+G = t V 2 .  
In view of the fact that under these conditions, the maximum of the pressure 
spectrum occurs at wave-numbers corresponding to length scales of order 
10 m, it seems likely that the velocity fluctuations at heights of the order 
of 1 m contribute most to p, and by relating MacCready’s measured 

- 

In  shear-flow turbulence in general, 
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values of ?, V and u+, we obtain the result that, to the correct order of 
magnitude at least, 

p = 9 x  103p:u~. (4.16) 

In most published oceanographic measurements, the wave heights 
observed have been expressed in terms of wind velocities U measured at 
some level, usually several metres, from the surface. In order to compare 
our theory with these observations, it is necessary to relate the friction 
velocity to the measured ‘wind velocity’ for conditions similar to those 
under which the observations were made. For the sea surface with moderate 
winds, a typical value of x, is of the order of 0.15 cm, and if the height x 
at which U is observed is of the order of 5 m, we have from (2.1) that 
approximately 

u = 18u+. 

The factor 18 is not critically dependent upon z or x,,, so that it can reasonably 
be taken as representative of the conditions under which measurements, 
such as those reported by Sverdrup & Munk (1947), were made. From 
(4.16), therefore 

This relation can be substituted into (4.13), and since for pressure components 
of the scale of gravity waves the convection velocity U, is equal to the 
velocity several metres from the surface, it is approximately equal to the 
‘ wind velocity ’ U. We therefore have, from (4.13), 

p = 9 x 10-zp: u4. 

N 0*035(&) 2 -. U3t 

Pw g 
where pu, is the density of the water. 

In oceanographic practice, wave heights are usually measured from 
trough to crest, and a widely used measure is H ,  the mean height of the 
third highest waves. Longuet-Higgins (1952) has shown that H 2  = Sp 
approximately, so that the previous equation can be written 

(4.17) 

taking the value The accuracy of the constant in this 
expression is quite low, mainly as a result of the uncertainties in the value 
of (Some reliable measurements of 
this would be very valuable.) It might be pointed out, however, that the 
factor Z5I2 in (4.13) represents an underestimate in consequence of the 
neglect of O(x, V,) and of the term C(K)/COSCC in (4.11) leading to (4.12). 

When the result (4.17) is compared with some of the wave heights 
observed under conditions of finite duration as in figure 6, we find quite 
good agreement over the rather restricted range of durations for which 
measurements have been made. The observations are those given by 
Sverdrup & Munk in their figure 7. The ratios of the speed C of the 
highest waves to the wind speed U are also plotted in figure 6, and in these 

for pa/pur .  

to be expected upon the surface. 
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observations the ratio ClU is of the order of unity. Under these circum- 
stances, other wave-generating processes such as sheltering and the effects 
of variations in shear stresses may have become important, and, in any case, 
this theory would be expected to give an appreciable underestimate of the 
wave heights for the reasons mentioned above. In spite of this, it seems 
that the approximations used are sufficiently accurate to account for the 
order of magnitude of the wave heights observed. 
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Figure 6. 

We are now in a position to see rather more clearly the probable reason 
for the failure of Eckart’s theory to predict the magnitude of the wave 
heights generated by the wind. His less precise specification of the pressure 
distribution has ‘ smoothed off’ the resonance peak of the response of the 
water surface, and it is the wave-numbers near this peak that can contribute 
largely to the wave spectrum at large durations. 

APPENDIX 
We wish to show that n ( x )  = 0 when x = 0, or equivalently that 

I P(X)P(X + r) dr = 0, 

the integration being over the whole surface with x fixed. This result is 
established by joint consideration of the surface boundary condition (2.12) 
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relating the surface displacements to the surface pressure distribution, and 
the dynamics of the mass of air above. If (2.12) is multiplied in turn by 
dA”(x, t )  and dw(x, t ) ,  and the probability average taken to find the spectral 
functions in the manner of (2.3), we can put x = 0 ( and so n, = n2 = 0) 
in the resulting equations. The result of these operations can be expressed 
as 

f z(x)F(x+r) dr = 0, 
J 

1 p(x)z(x + r) dr = O,  

or if v3 is the velocity of the fluid normal to the surface S ,  say, 

1 1 i3(x)’i’,(x + r) dZ(r) = 0, 

J p(x)h3(x + r) dC(r) = 0. 

We now turn to the dynamics of the fluid above the liquid surface. It 
has been proved formally by the author in another context (Phillips 1956) 
that the integrated surface pressure covariances are related to the acceleration 
covariances. integrated throughout the fluid, by an expression of the form 

1 g(x)p(x + r) dC(r) = pa 1 g(x)63@ + f’) dr‘, (A.2) 

where rf = r;, ri ,  ri is a point in the interior of the fluid, and the integration 
on the right is throughout the volume occupied by the fluid. g(x) is a 
fluctuating quantity of zero mean whose precise nature is, in this expression, 
immaterial ; it is introduced simply to provide integrable covariances with 
p(x+r) and h3(x+r). Taking g(x) =p(x), the surface pressure at the 
point x, it can be shown to be a consequence of continuity that 

[I p(x)G3(x + r‘) dr; dr; 

is independent of ri .  
vanishes according to (A.l) so that the integral 

But when 1.8 = 0, i.e. at the surface, this integral 

111 p(x)G3(x + r’) dr; drk drj 

vanishes throughout any layer of large finite thickness above the surface. 
Hence, from (A.2), 

1 P(X)P(X + r) dVr) = 0, (A.3) 

which is the result that we set out to establish. 
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